skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Tyler"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2026
  2. Free, publicly-accessible full text available January 12, 2026
  3. We describe a randomized algorithm for producing a near-optimal hierarchical off-diagonal low-rank (HODLR) approximation to an n × n matrix A, accessible only though matrix-vector products with A and AT. We prove that, for the rank-k HODLR approximation problem, our method achieves a (1 + β )log(n )-optimal approximation in expected Frobenius norm using O (k log(n )/β3) matrix-vector products. In particular, the algorithm obtains a (1 + ∈ )-optimal approximation with O (k log4(n )/∈3) matrix-vector products, and for any constant c, an nc-optimal approximation with O (k log(n )) matrix-vector products. Apart from matrix-vector products, the additional computational cost of our method is just O (n poly(log(n ), k, β )). We complement the upper bound with a lower bound, which shows that any matrix-vector query algorithm requires at least Ω(k log(n ) + k/ε ) queries to obtain a (1 + ε )-optimal approximation. Our algorithm can be viewed as a robust version of widely used “peeling” methods for recovering HODLR matrices and is, to the best of our knowledge, the first matrix-vector query algorithm to enjoy theoretical worst- case guarantees for approximation by any hierarchical matrix class. To control the propagation of error between levels of hierarchical approximation, we introduce a new perturbation bound for low-rank approximation, which shows that the widely used Generalized Nyström method enjoys inherent stability when implemented with noisy matrix-vector products. We also introduce a novel randomly perforated matrix sketching method to further control the error in the peeling algorithm. 
    more » « less
    Free, publicly-accessible full text available January 12, 2026
  4. Free, publicly-accessible full text available December 31, 2025
  5. Approximating the action of a matrix function $$f(\vec{A})$$ on a vector $$\vec{b}$$ is an increasingly important primitive in machine learning, data science, and statistics, with applications such as sampling high dimensional Gaussians, Gaussian process regression and Bayesian inference, principle component analysis, and approximating Hessian spectral densities. Over the past decade, a number of algorithms enjoying strong theoretical guarantees have been proposed for this task. Many of the most successful belong to a family of algorithms called \emph{Krylov subspace methods}. Remarkably, a classic Krylov subspace method, called the Lanczos method for matrix functions (Lanczos-FA), frequently outperforms newer methods in practice. Our main result is a theoretical justification for this finding: we show that, for a natural class of \emph{rational functions}, Lanczos-FA matches the error of the best possible Krylov subspace method up to a multiplicative approximation factor. The approximation factor depends on the degree of $f(x)$'s denominator and the condition number of $$\vec{A}$$, but not on the number of iterations $$k$$. Our result provides a strong justification for the excellent performance of Lanczos-FA, especially on functions that are well approximated by rationals, such as the matrix square root. 
    more » « less
    Free, publicly-accessible full text available December 13, 2025
  6. Free, publicly-accessible full text available December 10, 2025
  7. Abstract Simple stochastic momentum methods are widely used in machine learning optimization, but their good practical performance is at odds with an absence of theoretical guarantees of acceleration in the literature. In this work, we aim to close the gap between theory and practice by showing that stochastic heavy ball momentum retains the fast linear rate of (deterministic) heavy ball momentum on quadratic optimization problems, at least when minibatching with a sufficiently large batch size. The algorithm we study can be interpreted as an accelerated randomized Kaczmarz algorithm with minibatching and heavy ball momentum. The analysis relies on carefully decomposing the momentum transition matrix, and using new spectral norm concentration bounds for products of independent random matrices. We provide numerical illustrations demonstrating that our bounds are reasonably sharp. 
    more » « less
  8. We study the GMRES algorithm applied to linear systems of equations involving a scaled and shifted N ×<#comment/> N N\times N matrix whose entries are independent complex Gaussians. When the right-hand side of this linear system is independent of this random matrix, the N →<#comment/> ∞<#comment/> N\to \infty behavior of the GMRES residual error can be determined exactly. To handle cases where the right hand side depends on the random matrix, we study the pseudospectra and numerical range of Ginibre matrices and prove a restricted version of Crouzeix’s conjecture. 
    more » « less